
Acta Numerica (2008), pp. 191–234 c© Cambridge University Press, 2008

doi: 10.1017/S0962492906370018 Printed in the United Kingdom

Interior-point methods for optimization

Arkadi S. Nemirovski

School of Industrial and Systems Engineering,

Georgia Institute of Technology,

Atlanta, Georgia 30332, USA

E-mail: arkadi.nemirovski@isye.gatech.edu

Michael J. Todd

School of Operations Research and Information Engineering,

Cornell University, Ithaca, NY 14853, USA

E-mail: mjt7@cornell.edu

This article describes the current state of the art of interior-point methods
(IPMs) for convex, conic, and general nonlinear optimization. We discuss the
theory, outline the algorithms, and comment on the applicability of this class
of methods, which have revolutionized the field over the last twenty years.

CONTENTS

1 Introduction 191
2 The self-concordance-based approach to IPMs 194
3 Conic optimization 210
4 IPMs for non-convex programming 228
5 Summary 230
References 231

1. Introduction

During the last twenty years, there has been a revolution in the meth-
ods used to solve optimization problems. In the early 1980s, sequential
quadratic programming and augmented Lagrangian methods were favoured
for nonlinear problems, while the simplex method was basically unchal-
lenged for linear programming. Since then, modern interior-point methods
(IPMs) have infused virtually every area of continuous optimization, and
have forced great improvements in the earlier methods. The aim of this
article is to describe interior-point methods and their application to convex
programming, special conic programming problems (including linear and
semidefinite programming), and general possibly non-convex programming.
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We have also tried to complement the earlier articles in this journal by
Wright (1992), Lewis and Overton (1996), and Todd (2001).

Almost twenty-five years ago, Karmarkar (1984) proposed his projective
method to solve linear programming problems: from a theoretical point of
view, this was a polynomial-time algorithm, in contrast to Dantzig’s sim-
plex method. Moreover, with some refinements it proved a very worthy
competitor in practical computation, and substantial improvements to both
interior-point and simplex methods have led to the routine solution of prob-
lems (with hundreds of thousands of constraints and variables) that were
considered untouchable previously. Most commercial software, for exam-
ple CPlex (Bixby 2002) and XpressMP (Guéret, Prins and Sevaux 2002),
includes interior-point as well as simplex options.

The majority of the early papers following Karmarkar’s dealt exclusively
with linear programming and its near-relatives, convex quadratic program-
ming and the (monotone) linear complementarity problem. Gill, Murray,
Saunders, Tomlin and Wright (1986) showed the strong connection to earlier
barrier methods in nonlinear programming; Renegar (1988) and Gonzaga
(1989) introduced path-following methods with an improved iteration com-
plexity; and Megiddo (1989) suggested, and Monteiro and Adler (1989) and
Kojima, Mizuno and Yoshise (1989) realized, primal–dual versions of these
algorithms, which are the most successful in practice.

At the same time, Nesterov and Nemirovski were investigating the new
methods from a more fundamental viewpoint: What are the basic proper-
ties that lead to polynomial-time complexity? It turned out that the key
property is that the barrier function should be self-concordant. This seemed
to provide a clear, complexity-based criterion to delineate the class of opti-
mization problems that could be solved in a provably efficient way using the
new methods. The culmination of this work was the book by Nesterov and
Nemirovski (1994), whose complexity emphasis contrasted with the classic
text on barrier methods by Fiacco and McCormick (1968).

Fiacco and McCormick describe the history of (exterior) penalty and bar-
rier (sometimes called interior penalty) methods; other useful references are
Nash (1998) and Forsgren, Gill and Wright (2002). Very briefly, Courant
(1943) first proposed penalty methods, while Frisch (1955) suggested the
logarithmic barrier method and Carroll (1961) the inverse barrier method
(which inspired Fiacco and McCormick). While these methods were among
the most successful for solving constrained nonlinear optimization problems
in the 1960s, they lost favour in the late 1960s and 1970s when it became ap-
parent that the subproblems that needed to be solved became increasingly
ill-conditioned as the solution was approached.

The new research alleviated these fears to some extent, at least for cer-
tain problems. In addition, the ill-conditioning turned out to be relatively
benign: see, e.g., Wright (1992) and Forsgren et al. (2002). Moreover,
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Nesterov and Nemirovski (1994) showed that, at least in principle, any con-
vex optimization problem could be provided with a self-concordant barrier.
This was purely an existence result, however, as the generated barrier could
not be efficiently evaluated in general. (So we should qualify our earlier
statement: the class of optimization problems to which the new methods
can be efficiently applied consists of those with a computationally tractable

self-concordant barrier.) To contrast with the general case, Nesterov and
Nemirovski listed a considerable number of important problems where com-
putationally tractable self-concordant barriers were available, and provided
a calculus for constructing such functions for more complicated sets. A very
significant special case was that of the positive semidefinite cone, leading
to semidefinite programming. Independently, Alizadeh (1995) developed an
efficient interior-point method for semidefinite programming, with the moti-
vation of obtaining strong bounds for combinatorial optimization problems.

The theory of self-concordant barriers is limited to convex optimization.
However, this limitation has become less burdensome as more and more sci-
entific and engineering problems have been shown to be amenable to convex
optimization formulations. Researchers in control theory have been much
influenced by the ability to solve semidefinite programming problems (or
linear matrix inequalities, in their terminology) arising in their field: see
Boyd, El Ghaoui, Feron and Balakrishnan (1994). Moreover, a number
of seemingly non-convex problems arising in engineering design can be re-
formulated as convex optimization problems: see Boyd and Vandenberghe
(2004) and Ben-Tal and Nemirovski (2001).

Besides the books we have cited, other useful references include the lec-
ture notes of Nemirovski (2004) and the books of Nesterov (2003) and
Renegar (2001) for general convex programming; for mostly linear pro-
gramming, the books of Roos, Terlaky and Vial (1997), Vanderbei (2007),
Wright (1997) and Ye (1997); for semidefinite programming, the handbook
of Wolkowicz, Saigal and Vandenberghe (2000); and for general nonlinear
programming, the survey articles of Forsgren et al. (2002) and Gould, Orban
and Toint (2005).

In Section 2, we discuss self-concordant barriers and their properties, and
then describe interior-point methods for both general convex optimization
problems and conic problems, as well as the calculus of self-concordant
barriers. Section 3 treats conic optimization in detail, concentrating on
symmetric or self-scaled cones, including the non-negative orthant (linear
programming) and the positive semidefinite cone (semidefinite program-
ming). We also briefly discuss some recent developments in hyperbolic-
ity cones, global polynomial optimization, and copositive programming.
Finally, Section 4 is concerned with the application of interior-point methods
to general, possibly non-convex, nonlinear optimization. These methods are
used in some of the most effective codes for such problems, such as IPOPT
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(Wächter and Biegler 2006), KNITRO (Byrd, Nocedal and Waltz 2006),
and LOQO (Vanderbei and Shanno 1999).

We have concentrated on the theory and application in structured convex
programming of interior-point methods, since the polynomial-time complex-
ity of these methods and its range of applicability have been a major focus of
the research of the last twenty years. For further coverage of interior-point
methods for general nonlinear programming we recommend the survey ar-
ticles of Forsgren et al. (2002) and Gould, Orban and Toint (2005). Also,
to convey the main ideas of the methods, we have given short shrift to im-
portant topics including attaining feasibility from infeasible initial points,
dealing with infeasible problems, and superlinear convergence. The liter-
ature on interior-point methods is huge, and the area is still very active;
the reader wishing to follow the latest research is advised to visit the Opti-
mization Online website www.optimization-online.org/ and the Interior-Point
Methods Online page at www-unix.mcs.anl.gov/otc/InteriorPoint/. A very
useful source is Helmberg’s semidefinite programming page www-user.tu-
chemnitz.de/∼helmberg/semidef.html. Software for optimization problems,
including special-purpose algorithms for semidefinite and second-order cone
programming, is available at the Network Enabled Optimization System
(NEOS) homepage neos.mcs.anl.gov/neos/solvers/index.html.

2. The self-concordance-based approach to IPMs

Preliminaries

The first path-following interior-point polynomial-time methods for linear
programming, analysed by Renegar (1988) and Gonzaga (1989), turned out
to belong to the very well-known interior penalty scheme going back to
Fiacco and McCormick (1968). Consider a convex program

min{cT x : x ∈ X}, (2.1)

X being a closed convex domain (i.e., a closed convex set with a non-empty
interior) in R

n; this is one of the universal forms of a convex program. In
order to solve the problem with a path-following scheme, one equips X with
an interior penalty or barrier function F – a smooth and strongly convex1

function defined on intX such that F (xk) → +∞ on every sequence of
points xk ∈ intX converging to a point x̄ ∈ ∂X – and considers the barrier

family of functions
Ft(x) = tcT x + F (x), (2.2)

where t > 0 is the penalty parameter. Under mild assumptions (e.g., when
X is bounded), every function Ft attains its minimum on intX at a unique
point x∗(t), and the central path {x∗(t) : t ≥ 0} converges, as t → ∞,

1 Hessian positive definite everywhere.
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to the optimal set of (2.1). The path-following scheme for solving (2.1)
suggests ‘tracing’ this path as t → ∞ according to the following conceptual
algorithm:

Given the current iterate (tk > 0, xk ∈ intX) with xk ‘reasonably
close’ to x∗(tk), we

(a) replace the current value tk of the penalty parameter with a
larger value tk+1; and

(b) run an algorithm for minimizing Ftk+1
(·), starting at xk, until a

point xk+1 close to x∗(tk+1) = argmin int X Ftk+1
(·) is found.

As a result, we get a new iterate (tk+1, xk+1) ‘close to the path’ and
loop to step k + 1.

The main advantage of the scheme described above is that x∗(t) is, es-
sentially, the unconstrained minimizer of Ft, which allows the use in (b)
of basically any method for smooth convex unconstrained minimization,
e.g., the Newton method. Note, however, that the classical theory of
the path-following scheme did not suggest its polynomiality; rather, the
standard theory of unconstrained minimization predicted slow-down of the
process as the penalty parameter grows. In sharp contrast to this com-
mon wisdom, both Renegar and Gonzaga proved that, when applied to
the logarithmic barrier F (x) = −∑

i ln(bi − aT
i x) for a polyhedral set

X = {x : aT
i x ≤ bi, 1 ≤ i ≤ m}, a Newton-method-based implementation

of the path-following scheme can be made polynomial. These breakthrough
results were obtained via an ad hoc analysis of the behaviour of the Newton
method as applied to the logarithmic barrier (augmented by a linear term).
In a short time Nesterov realized what intrinsic properties of the standard
log-barrier are responsible for this polynomiality, and this crucial under-
standing led to the general self-concordance-based theory of polynomial-
time interior-point methods developed in Nesterov and Nemirovski (1994);
this theory explained the nature of existing interior-point methods (IPMs)
for LP and allowed the extension of these methods to the entire field of
convex programming. We now provide an overview of the basic results of
this theory.2

2.1. Self-concordance

In retrospect, the notion of self-concordance can be extracted from analy-
sis of the classical results on the local quadratic convergence of Newton’s

2 Up to minor refinements which can be found in Nemirovski (2004), all results quoted
in the next subsection without explicit references are taken from Nesterov and Nemir-
ovski (1994).
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method as applied to a smooth convex function f with non-singular Hes-
sian. These results state that a quantitative description of the domain of
quadratic convergence depends on (a) the condition number of ∇2f evalu-
ated at the minimizer x∗, and (b) the Lipschitz constant of ∇2f . In hind-
sight, such a description seems unnatural, since it is ‘frame-dependent’: it
heavily depends on an ad hoc choice of the Euclidean structure in R

n; in-
deed, both the condition number of ∇2f(x∗) and the Lipschitz constant of
∇2f(·) depend on this structure, which is in sharp contrast to the affine in-
variance of the Newton method itself. At the same time, a smooth strongly
convex function f by itself defines at every point x a Euclidean structure
〈u, v〉f,x = D2f(x)[u, v]. With respect to this structure, ∇2f(x) is as well-
conditioned as it could be – it is just the unit matrix. The idea of Nesterov
was to use this local Euclidean structure, intrinsically linked to the function
f we intend to minimize, in order to quantify the Lipschitz constant of ∇2f ,
with the ultimate goal of getting a ‘frame-independent’ description of the
behaviour of the Newton method. The resulting notion of self-concordance
is defined as follows.

Definition 2.1. Let X ⊂ R
n be a closed convex domain. A function

f : intX → R is called self-concordant (sc) on X if

(i) f is a three times continuously differentiable convex function with
f(xk) → ∞ if xk → x̄ ∈ ∂X; and

(ii) f satisfies the differential inequality

|D3f(x)[h, h, h]| ≤ 2
(
D2f(x)[h, h]

)3/2
, ∀x ∈ intX, h ∈ R

n. (2.3)

Given a real ϑ ≥ 1, F is called a ϑ-self-concordant barrier (ϑ-scb) for X if
F is self-concordant on X and, in addition,

|DF (x)[h]| ≤ ϑ1/2
(
D2F (x)[h, h]

)1/2
, ∀x ∈ intX, h ∈ R

n. (2.4)

(As above, we will use f for a general sc function and F for an scb in what
follows.) Note that the powers 3/2 and 1/2 in (2.3) and (2.4) are a must,
since both sides of the inequalities should be of the same homogeneity degree
with respect to h. In contrast to this, the two sides of (2.3) are of different
homogeneity degrees with respect to f , meaning that if f satisfies a relation
of the type (2.3) with some constant factor on the right-hand side, we can
always make this factor equal to 2 by scaling f appropriately. The advantage
of the specific factor 2 is that with this definition, the function x �→ − ln(x) :
R++ → R becomes a 1-scb for R+ directly, without any scaling, and this
function is the main building block of the theory we are presenting. Finally,
we remark that (2.3) and (2.4) have a very transparent interpretation: they
mean that D2f and F are Lipschitz-continuous, with constants 2 and ϑ1/2,
in the local Euclidean (semi)norm ‖h‖f,x =

√
〈h, h〉f,x =

√
hT∇2f(x)h

defined by f or similarly by F .
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It turns out that self-concordant functions possess nice local properties
and are perfectly well suited to Newton minimization. We are about to
present the most important of the related results. In what follows, f is an
sc function on a closed convex domain X.

2.1.0. Bounds on third derivatives and the recession space of sc functions

For all x ∈ intX and all h1, h2, h3 ∈ R
n, we have

|D3f(x)[h1, h2, h3]| ≤ 2‖h1‖f,x‖h2‖f,x‖h3‖f,x.

The recession subspace Ef = {h : D2f(x)[h, h] = 0} of f is independent of
x ∈ intX, and X = X + Ef . In particular, if ∇2f(x) is positive definite at
some point in intX, then ∇2f(x) is positive definite for all x ∈ intX (in
this case, f is called a non-degenerate sc function; this is always the case
when X does not contain lines).

It is convenient to write A ≻ 0 (A � 0) to denote that the symmetric
matrix A is positive definite (semidefinite), and A � B and B � A (A ≻ B
and B ≺ A) if A − B � 0 (A − B ≻ 0).

2.1.1. Dikin’s ellipsoid and the local behaviour of f

For every x ∈ intX, the unit Dikin ellipsoid of f {y : ‖y − x‖f,x ≤ 1} is
contained in X, and within this ellipsoid, f is nicely approximated by its
second-order Taylor expansion:

r := ‖h‖f,x < 1 ⇒

(1 − r)2∇2f(x) � ∇2f(x + h) � 1

(1 − r)2
∇2f(x), (2.5)

f(x) + ∇f(x)T h + ρ(−r) ≤ f(x + h) ≤ f(x) + ∇f(x)T h + ρ(r),

where ρ(s) := − ln(1− s)− s = s2/2+ s3/3+ · · · . (Indeed, the lower bound
in the last line holds true for all h such that x + h ∈ intX.)

2.1.2. The Newton decrement and the damped Newton method

Let f be non-degenerate. Then ‖ · ‖f,x is a norm, and its conjugate norm is

‖η‖∗f,x = max
{
hT η : ‖h‖f,x ≤ 1

}
=
√

ηT [∇2f(x)]−1η. The quantity

λ(x, f) := ‖∇f(x)‖∗f,x = ‖[∇2f(x)]−1∇f(x)‖f,x

= max
h

{
Df(x)[h] : D2f(x)[h, h] ≤ 1

}
,

called the Newton decrement of f at x, is a finite continuous function of
x ∈ intX which vanishes exactly at the (unique, if any) minimizer xf of
f on intX; this function can be considered as the ‘observable’ measure
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of proximity of x to xf . The Newton decrement possesses the following
properties:

λ(x, f) < 1 ⇒






argmin int X f �= ∅, (a)

f(x) − minint X f ≤ ρ(λ(x, f)), (b)

‖xf − x‖f,x ≤ λ(x,f)
1−λ(x,f) , (c)

‖xf − x‖f,xf
≤ λ(x,f)

1−λ(x,f) . (d)

(2.6)

In particular, when it is at most 1/2, the Newton decrement is, within
an absolute constant factor, the same as ‖x − xf‖f,x, ‖x − xf‖f,xf

, and√
f(x) − minint X f .
The damped Newton method as applied to f is the iterative process

xk+1 = xk − 1

1 + λ(xk, f)
[∇2f(xk)]

−1∇f(xk) (2.7)

starting at a point x0 ∈ intX. The damped Newton method is well defined:
all its iterates belong to intX. Besides this, setting λj := λ(xj , f), we have

λk+1 ≤ 2λ2
k and f(xk) − f(xk+1) ≥ ρ(−λk) = λk − ln(1 + λk). (2.8)

As a consequence of (2.8) and (2.7), we get the following ‘frame- and data-in-
dependent’ description of the convergence properties of the damped Newton
method as applied to an sc function f : the domain of quadratic convergence
is {x : λ(x, f) ≤ 1/4}; after this domain is reached, every step of the method
nearly squares the Newton decrement, the ‖·‖f,xf

-distance to the minimizer
and the residual in terms of f . Before the domain is reached, every step
of the method decreases the objective by at least Ω(1) = 1/4 − ln(5/4).
It follows that a non-degenerate sc function admits its minimum on the
interior of its domain if and only if it is bounded below, and if and only if
λ(x, f) < 1 for certain x. Whenever this is the case, for every ǫ ∈ (0, 0.1]
the number of steps N of the damped Newton method which ensures that
f(xk) ≤ minint X f + ǫ does not exceed O(1)

[
ln ln(1/ǫ)+f(x0)−minint X f

]
.

(Here and below, O(1) denotes a suitably chosen absolute constant.)

2.1.3. Self-concordance and Legendre transformations

Let f be non-degenerate. Then the domain {y : f∗(y) < ∞} of the (modi-
fied) Legendre transformation

f∗(y) = sup
x∈int X

[
−yT x − f(x)

]

of f is an open convex set, f∗ is self-concordant on the closure X∗ of this
set, and the mappings x �→ −∇f(x) and y �→ −∇f∗(y) are bijections of
intX and intX∗ that are inverse to each other. Besides this, X∗ is a closed
cone with a non-empty interior, specifically, the cone dual to the recession
cone of X.
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We next list specific properties of scbs not shared by more general sc

functions. In what follows, F is a non-degenerate ϑ-scb for a closed convex
domain X.

2.1.4. Non-degeneracy, semiboundedness, attaining minimum

F is non-degenerate if and only if X does not contain lines. We have

∀(x ∈ intX, y ∈ X) : ∇F (x)T (y − x) ≤ ϑ (2.9)

(semiboundedness) and

∀(x ∈ intX, y ∈ X with ∇F (x)T (y−x) ≥ 0) : ‖y−x‖F,x ≤ ϑ+2
√

ϑ. (2.10)

F attains its minimum on intX if and only if X is bounded; otherwise
λ(x, F ) ≥ 1 for all x ∈ intX.

2.1.5. Useful bounds

For x ∈ intX, let πx(y) = inf{t : t > 0, x + t−1(y − x) ∈ X} be the
Minkowski function of X with respect to x. We have

∀(x, y ∈ intX) :

{
F (y) ≤ F (x) + ϑ ln

(
1

1−πx(y)

)
,

F (y) ≥ F (x) + ∇F (x)T (y − x) + ln
(

1
1−πx(y)

)
− πx(y).

(2.11)

2.1.6. Existence of the central path and its convergence to the optimal set

Consider problem (2.1) and assume that the domain X of the problem is
equipped with a self-concordant barrier F , and the level sets of the objective
{x ∈ X : cT x ≤ α} are bounded. In the situation in question, F is non-
degenerate, cT x attains its minimum on X, the central path

x∗(t) := argmin
x∈int X

Ft(x), Ft(x) := tcT x + F (x), t > 0,

is well-defined, all functions Ft are self-concordant on X and

ǫ(x∗(t)) := cT x∗(t) − min
x∈X

cT x ≤ ϑ

t
, t > 0. (2.12)

Moreover, if λ(x, Ft) ≤ 1
2 for some t > 0, then

ǫ(x) ≤ ϑ +
√

ϑ

t
. (2.13)

Let us derive the claims in 2.1.6 from the preceding facts, mainly in order
to explain why these facts are important. By 2.1.1, F is non-degenerate,
since X does not contain lines. The fact that all Ft are sc is evident from
the definition: self-concordance is clearly preserved when adding a linear
or convex quadratic function to an sc one. Further, the level sets of the
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objective on X are bounded, so that the objective attains its minimum over
X at some point x∗ and, as is easily seen, is coercive on X: cT x ≥ α+β‖x‖
for all x ∈ X with appropriate constants β > 0 and α (‖ · ‖, without
subscripts, always denotes the Euclidean norm). Now fix a point ȳ in intX;

then πx(ȳ) ≤ ‖ȳ−x‖
r+‖ȳ−x‖ for all x ∈ intX, where r > 0 is such that a ‖ · ‖-ball

of radius r centred at ȳ belongs to X. Invoking the first line of (2.11) with
y = ȳ, we conclude that F (x) ≥ F (ȳ) + ϑ ln( r

r+‖x−ȳ‖) for all x ∈ intX.

Recalling that the objective is coercive, we conclude that Ft(x) → ∞ as
x ∈ X and ‖x‖ → ∞, so that the level sets of Ft are bounded. Since Ft

is, along with F , an interior penalty for X, these sets are in fact compact
subsets of int X, whence Ft attains its minimum on intX. Since Ft is convex
and non-degenerate along with F , the minimizer is unique; thus, the central
path is well-defined. To verify (2.12), note that ∇F (x∗(t)) = −tc, whence
cT (x∗(t) − y) = t−1∇F (x∗(t)

T (y − x∗(t)). By (2.9), the right-hand side in
this equality is at most ϑ/t, provided y ∈ X, and (2.12) follows. Finally,
when λ(x, Ft) ≤ 1/2, then ‖x− x∗(t)‖Ft,x∗(t) ≤ 1 by (2.6.d) as applied to Ft

instead of F . Since ‖ · ‖Ft,u ≡ ‖ · ‖F,u, we get ‖x− x∗(t)‖F,x∗(t) ≤ 1, whence

cT (x − x∗(t)) ≤ ‖c‖∗F,x∗(t)‖x − x∗(t)‖F,x∗(t)

≤ ‖c‖∗F,x∗(t) = t−1‖∇F (x∗(t))‖∗F,x∗(t) ≤ t−1
√

ϑ,

which combines with (2.12) to imply (2.13).

2.2. A primal polynomial-time path-following method

As an immediate consequence of the above results, we arrive at the following
important result.

Theorem 2.1. Consider problem (2.1) and assume that the level sets of
the objective are bounded, and we are given a ϑ-scb F for X; according
to 2.1.6, c and F define a central path x∗(·). Suppose we also have at our
disposal a starting pair (t0 > 0, x0 ∈ intX) which is close to the path in the
sense that λ(x0, Ft0) ≤ 0.1, and consider the following implementation (the
basic path-following algorithm) of the path-following scheme:

(tk, xk) �→
{

tk+1 = (1 + 0.1ϑ−1/2)tk,

xk+1 = xk − 1
1+λ(xk,Ftk+1

) [∇2F (xk)]
−1∇Ftk+1

(xk).
(2.14)

This recurrence is well-defined (i.e., xk ∈ intX for all k), maintains close-
ness to the path (i.e., λ(xk, Ftk) ≤ 0.1 for all k) and ensures the efficiency
estimate

∀k : cT xk − min
x∈X

cT x ≤ ϑ +
√

ϑ

tk
≤ ϑ +

√
ϑ

t0
exp

{
−0.095√

ϑ
k

}
. (2.15)



Interior-point methods for optimization 201

In particular, for every ǫ > 0, it takes at most

N(ǫ) = O(1)
√

ϑ ln

(
ϑ

t0ǫ
+ 2

)

steps of the recurrence to get a strictly feasible (i.e., in intX) solution to
the problem with residual in terms of the objective at most ǫ.

Proof. In view of 2.1.2 and 2.1.6, all we need to prove by induction on k is
that (2.14) maintains closeness to the path. Assume that (t = tk, x = xk) is
close to the path, and let us verify that the same is true for (t+ = tk+1, x+ =
xk+1). Taking into account that ‖ · ‖Ft,u = ‖ · ‖F,u and similarly for the
conjugate norms, we have 0.1 ≥ λ(x, Ft) = ‖tc + ∇F (x)‖∗F,x so that

t‖c‖∗F,x ≤ 0.1 + ‖∇F (x)‖∗F,x

≤ 0.1 + ϑ1/2,

using the fact that F is a ϑ-scb. This implies that

λ(x, Ft+) = ‖[tc + ∇F (x)] + (t+ − t)c‖∗F,x

≤ ‖tc + ∇F (x)‖∗F,x + (t+/t − 1)t‖c‖∗F,x

≤ 0.1 + 0.1ϑ−1/2t‖c‖∗F,x ≤ 0.1[1 + ϑ−1/2[0.1 + ϑ1/2]] ≤ 0.21.

Finally, we obtain

λ(x+, Ft+) ≤ 2λ2(x, Ft+) ≤ 0.1,

using (2.8).

Remarks. A The algorithm presented in Theorem 2.1 is, in a sense, in-
complete: it does not explain how to approach the central path in order to
start path-tracing. There are many ways to resolve this issue. Assume, e.g.,
that X is bounded and we know in advance a point y ∈ intX. When X is
bounded, every linear form gT x generates a central path, and we can easily
find such a path passing through y: with g = −∇F (y), the corresponding
path passes through y when t = 1. Now, as t → +0, all paths converge to
the minimizer xF of F over X, and thus approach each other. At the same
time, we can as easily trace the paths backwards as trace them forwards –
with the parameter updating rule tk+1 = (1 − 0.1ϑ−1/2)tk, the recurrence
in Theorem 2.1 still maintains closeness to the path, now along a sequence
of values of the parameter t decreasing geometrically. Thus, we can trace
the auxiliary path passing through y backwards until coming close to the
path of interest, and then start tracing the latter path forwards. A simple
analysis demonstrates that with simple on-line termination and switching
rules, the resulting algorithm, for every ǫ > 0, produces a strictly feasible
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ǫ-solution to the problem at the price of no more than

O(1)
√

ϑ ln

(
ϑV

(1 − πxF
(y))ǫ

+ 2

)

Newton steps of both phases, where V = maxx∈X cT x − minx∈X cT x.

B The outlined path-following algorithm, using properly chosen sc barriers,
yields the currently best polynomial-time complexity bounds for basically
all ‘well-structured’ generic convex programs, such as those of linear, second-
order cone, semidefinite, and geometric programming, to name just a few.
At the same time, from a practical perspective a severe shortcoming of
the algorithm is its worst-case-oriented nature: as presented, it will always

perform according to its worst-case theoretical complexity bounds. There
exist implementations of IPMs that are much more powerful in practice,
using more aggressive parameter updating policies that are adjusted during
the course of the algorithm. All known algorithms of this type are primal–

dual : they work simultaneously on the problem and its dual, and nearly
all of them, including all those implemented so far in professional software,
work with conic problems, specifically, those of linear, second-order cone,
and semidefinite programming (the only exceptions are the cone-free primal–
dual methods proposed in Nemirovski and Tunçel (2005); these methods,
however, have not yet been implemented). Our next goal is to describe the
general theory of primal–dual interior-point methods for conic problems.

2.3. Interior-point methods for conic problems

Interior-point methods for conic problems are associated with specific ϑ-
sc barriers for cones, those satisfying the so-called logarithmic homogeneity

condition.

Definition 2.2. Let K ⊂ R
n be a cone (from now on, all cones are closed

and convex, have non-empty interiors, and contain no lines). A ϑ-self-con-
cordant barrier F for K is called logarithmically homogeneous (an lhscb),
if

∀(τ > 0, x ∈ intK) : F (τx) = F (x) − ϑ ln τ. (2.16)

In fact, every self-concordant function on a cone K satisfying the identity
(2.16) is automatically a ϑ-scb for K, since whenever a smooth function F
satisfies the identity (2.16), we have

∀(x ∈ intK) : ∇F (x)T x = −ϑ, ∇2F (x)x = −∇F (x); (2.17)

it follows that when F is self-concordant, we have

λ(x, F ) =
√

∇F (x)T [∇2F (x)]−1∇F (x) =
√
−∇F (x)T x =

√
ϑ,
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meaning that F is indeed a ϑ-scb for K. A nice and important fact is that
the (modified) Legendre transformation F∗(s) of a ϑ-lhscb F for a cone K

is a ϑ-lhscb for the cone

K∗ := {s ∈ R
n : sT x ≥ 0, ∀x ∈ K} (2.18)

dual to K. The resulting symmetry of lhscbs complements the symmetry
between cones and their duals. Moreover, we have the following result.

Proposition 2.1. The mappings x �→ −∇F (x) and s �→ −∇F∗(s) are
inverse bijections between intK and intK∗, and these bijections are homo-
geneous of degree −1: −∇F (τx) = −τ−1∇F (x), x ∈ intK, τ > 0, and
similarly for F∗. Finally, ∇2F and ∇2F∗ are homogeneous of degree −2,
with ∇2F∗(−∇F (x)) = [∇2F (x)]−1 and ∇2F (−∇F∗(s)) = [∇2F∗(s)]

−1.

Now assume that we want to solve a primal–dual pair of conic problems

min
x

{
cT x : Ax = b, x ∈ K

}
(P ),

max
y,s

{
bT y : AT y + s = c, s ∈ K∗

}
(D),

(2.19)

where the rows of A are linearly independent and both problems have strictly
feasible solutions (i.e., feasible solutions with x ∈ intK and s ∈ intK∗).
Assume also that we have at our disposal a ϑ-lhscb F for K along with its
Legendre transformation F∗, which is a ϑ-lhscb for K∗. (P ) can be treated
as a problem of the form (2.1), with the affine set L = {x : Ax = b} playing
the role of the ‘universe’ R

n and K ∩ L in the role of X. It is easily seen
that the restriction of F to intK ∩ L is a ϑ-scb for the resulting problem
(2.1) (see rule D in Section 2.4), and that this is a problem with bounded
level sets. As a result, we can define the primal central path {x∗(t)}, which
comprises strictly feasible solutions to (P ) and converges, as t → ∞, to
the primal optimal set. Similarly, setting Y = {y : c − AT y ∈ K∗}, the
dual problem can be written in the form of (2.1), namely, as miny∈Y [−b]T y.
The domain Y of this problem can also be equipped with a ϑ-scb, namely,
F∗(c−AT y), and again the problem has bounded level sets, so that we can
define the associated central path {y∗(t)}. This induces the dual central path

{s∗(t) := c − AT y∗(t)}; the latter path comprises interior points of K∗. We
have arrived at the primal–dual central path {z∗(t) := (x∗(t), s∗(t))} ‘living’
in the interior of K × K∗. It is easily seen that for every t > 0, the point

z∗(t) is uniquely defined by the following restrictions on its components x, s:

x ∈ Xo := intK ∩ {x : Ax = b} [strict primal feasibility],

s ∈ So := intK∗ ∩ {s : ∃y such that AT y + s = c} [strict dual feasibility],

s = −t−1∇F (x)

x = −t−1∇F∗(s)

}
[augmented complementary slackness]. (2.20)



204 A. S. Nemirovski and M. J. Todd

Note that, by Proposition 2.1, each of the complementary slackness equa-
tions implies the other, so that we could eliminate either one of them; we
keep both to highlight the primal–dual symmetry.

Primal–dual path-following interior-point methods trace simultaneously
the primal and dual central paths basically in the same fashion as the
method described in Theorem 2.1. It turns out that tracing the paths
together is much more advantageous than tracing only one of them. In our
general setting these advantages permit, for example,

• adaptive long-step strategies for path-tracing (Nesterov 1997);

• an elegant way (‘self-dual embedding’; see, e.g., Ye, Todd and Mizuno
(1994), Xu, Hung and Ye (1996), Andersen and Ye (1999), Luo, Sturm
and Zhang (2000), de Klerk, Roos and Terlaky (1997) and Potra and
Sheng (1998)) to initialize path-tracing even in the case when no strictly
feasible solutions to (P ) and (D) are available in advance; and

• building certificates of strict (i.e., preserved by small perturbations of
the data) primal or dual infeasibility (Nesterov, Todd and Ye 1999)
when it holds, etc.

Primal–dual IPMs achieve their full power when the underlying cones are
self-scaled , which is the case in linear, second-order cone, and semidefinite
programming, considered in depth in Section 3. In the remaining part of
this subsection, we overview, still in the general setting, another family of
primal–dual IPMs, those based on potential reduction.

Potential-reduction interior-point methods

We now present two potential-reduction IPMs which are straightforward
conic generalizations, developed by Nesterov and Nemirovski (1994), of al-
gorithms originally proposed for LP.

Karmarkar’s Algorithm. The first polynomial-time interior-point method
for LP was discovered by Karmarkar (1984). The conic generalization of
the algorithm is as follows. Assume that we want to solve a strictly fea-
sible problem (P ) in the following special setting: the primal feasible set
X := {x ∈ K : Ax = b} is bounded, the optimal value is known to be 0,
and we know a strictly feasible primal starting point x̄ (using conic duality,
every strictly primal–dual feasible conic problem can be transformed into
this form). Lastly, K is equipped with a ϑ-lhscb F . It is immediately seen
that under our assumptions b �= 0, so that we lose nothing when assuming
that the first equality constraint reads eT x = 1 for some vector e. Subtract-
ing this equality with appropriate coefficients from the remaining equality
constraints in (P ), we can make all these constraints homogeneous, thus
representing the problem in the form

min
x

{
cT x : x ∈ L ∩ K, eT x = 1

}
,
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where L is a linear subspace in R
n. Note that since X is bounded, we have

eT x > 0 for every 0 �= x ∈ (L ∩ K). If we exclude the trivial case cT x̄ = 0
(here already x̄ is an optimal solution), cT x is positive on the relative interior
Xo := X ∩ intK of X, so that the projective transformation x �→ p(x) :=
x/cT x is well defined on Xo; this transformation maps Xo onto the relative
interior Zo := Z∩ intK of the set Z := {z : z ∈ L∩K, cT z = 1}, the inverse
transformation being z �→ z/eT z. The point is that Z is unbounded , since
otherwise the linear form eT z would be bounded and positive on Z due to
eT x > 0 for 0 �= x ∈ L ∩ K, and so cT x would be bounded away from 0 on
Xo, which is not the case. All we need is to generate a sequence zk ∈ Zo

such that ‖zk‖ → ∞ as k → ∞; indeed, for such a sequence we clearly
have eT zk → ∞ and cT zk = 1, whence the points xk = zk/eT zk, which are
feasible solutions to the problem of interest, satisfy cT xk → 0 = minx∈X cT x
as k → ∞. This is how we ‘run to ∞ along Z’ using Karmarkar’s algorithm.
Let G(z) be the restriction of F to Zo. Treating Z as a subset of its affine
hull Aff(Z), so that Z is a closed convex domain in a certain R

n, we find
that G is a ϑ-scb for Z (see rule D in Section 2.4). Since Z, along with
K, does not contain lines, G is non-degenerate and therefore λ(z, G) ≥ 1
for all z ∈ Zo by 2.1.4 (recall that Z is unbounded); applying 2.1.2, we
conclude that the step z �→ z+(z) of the damped Newton method as applied

to G, z maps Zo into Zo and reduces G by at least the absolute constant

δ := 1 − ln(2) > 0. It follows that applying the damped Newton method
to G, we push G to −∞, and therefore indeed run to ∞ along Z. To
get an explicit efficiency estimate, let us look at the Karmarkar potential

function φ : Xo → R defined by φ(x) = ϑ ln(cT x) + F (x); note that φ(x) =
G(p(x)) due to the ϑ-logarithmical homogeneity of F . It follows that the

basic Karmarkar step x �→ x+(x) = p−1(z+(p(x))) maps Xo into itself and

reduces the potential by at least δ. In Karmarkar’s algorithm, one iterates
this step (usually augmented by a line search aimed at getting a larger
reduction in the potential than the guaranteed reduction δ) starting with
x0 := x̄, thus generating a sequence {xk}∞k=0 of strictly feasible solutions
to (P ) such that φ(xk) ≤ φ(x̄) − kδ = F (x̄) + ϑ ln(cT x̄) − kδ. Recalling
that X is bounded, so that F is bounded below on Xo by 2.1.4, we have
also F (x) ≥ F̂ := minx∈Xo F (x), whence F (x̄) + ϑ ln(cT x̄) − kδ ≥ φ(xk) ≥
F̂ + ϑ ln(cT xk). We arrive at the efficiency estimate

cT xk = cT xk − min
x∈X

cT x ≤ cT x̄ exp

(
F (x̄) − F̂ − kδ

ϑ

)
,

meaning that, for every ǫ ∈ (0, 1), at most
⌊ [F (x̄)− bF ]+ϑ ln(1/ǫ)

δ

⌋
+ 1 steps

of the method are needed to arrive at a strictly feasible solution xk with
cT xk = cT xk − minX cT x ≤ ǫcT x̄. The advantage of the Karmarkar algo-
rithm, as compared to that in Theorem 2.1, is that our only interest now
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is driving the (on-line-observable) potential function φ(x) to −∞ as rapidly
as possible, while staying strictly feasible at all times; this can be done,
e.g., by augmenting the basic step with an appropriate line search, which
usually leads to a much larger reduction in φ(·) at each step than the reduc-
tion δ guaranteed by the theory. As a result, the practical performance of
Karmarkar’s algorithm is typically much better than predicted by the theo-
retical complexity estimate above. On the negative side, the latter estimate
is worse than that for the basic path-following method from Theorem 2.1:
now the complexity is proportional to ϑ rather than to ϑ1/2 and ϑ ≥ 1
may well be large. To circumvent this difficulty, we now present a primal–

dual potential-reduction algorithm, extending to the general conic case the
algorithm of Ye (1991) originally developed for LP.

Primal–dual potential-reduction algorithm. This algorithm is a ‘genuine
primal–dual one’; it works on a strictly feasible pair (2.19) of conic prob-
lems and associates with this pair the generalized Tanabe–Todd–Ye (Tanabe
1988, Todd and Ye 1990) primal–dual potential function p : Xo × So → R

defined by

p(x, s) := (ϑ+
√

ϑ) ln(sT x)+F (x)+F∗(s) =: p0(x, s)+
√

ϑ ln(sT x). (2.21)

It is easily seen that p0 is bounded below on Xo×So and the set of minimizers
of p0 on Xo × So is exactly the primal–dual central path, where p0 takes
the value p∗ = ϑ ln(ϑ) − ϑ. It follows that for (x, s) ∈ Xo × So, the duality

gap sT x can be bounded in terms of p:

(x, s) ∈ Xo × So ⇒ sT x ≤ exp{ϑ−1/2[p(x, s) − p∗]}. (2.22)

(It can be readily checked – see Proposition 3.1 – that cT x− bT y = sT x ≥ 0
for any feasible x and (y, s), so sT x bounds the distance from optimality of
both the primal and dual objective function values.)

Hence all we need in order to approach primal–dual optimality is a ‘basic
primal–dual step’: an update (x, s) �→ (x+, s+) : Xo × So → Xo × So

which ‘substantially’ reduces the potential p, at least by a positive absolute
constant δ. Iterating this update (perhaps augmented by a line search
aimed at further reduction in p) starting with a given initial point (x0, s0) ∈
Xo × So, we get a sequence of strictly feasible primal solutions xk and
dual slacks sk ∈ intK∗ (which can be immediately extended to dual feasible
solutions (yk, sk)), such that p(xk, sk) ≤ p(x0, s0)−kδ, which combines with
(2.22) to yield the efficiency estimate

sT
k xk ≤ exp{ϑ−1/2[p0(x0, s0) − p∗]} exp{−δϑ−1/2k}sT

0 x0.

Now it takes only O(1)
√

ϑ steps to reduce the (upper bound on the) duality
gap by an absolute constant factor, and we end up with complexity bounds
almost identical to those in Theorem 2.1.
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It remains to explain how to make a basic primal–dual step. This can be
done as follows. With a fixed positive threshold λ̄, given (x, s) ∈ Xo × So,
we linearize the logarithmic term in the potential in x and in s, thus getting
the functions

ξ �→ px(ξ) = (ϑ +
√

ϑ)
sT ξ

sT x
+ F (ξ) + constx : intK → R,

σ �→ ps(σ) = (ϑ +
√

ϑ)
σT x

sT x
+ F∗(σ) + consts : intK∗ → R,

which are non-degenerate self-concordant functions on K and K∗, respec-
tively. We compute the Newton direction dx = argmin d{dT∇px(x) +
1
2dT∇2px(x)d : x + d ∈ Aff(X)} of px

∣∣
X

at ξ = x along with the cor-

responding Newton decrement λ := λ(x, px
∣∣
X

) =
√

−∇px(x)T dx. When

λ ≥ λ̄, one can set s+ = s and take for x+ the damped Newton iterate
x + (1 + λ)−1dx of x, the Newton method being applied to px

∣∣
X

. When

λ < λ̄, one can set

x+ = x and s+ =
sT x

ϑ +
√

ϑ
[−∇F (x) −∇2F (x)dx].

It can be shown that with a properly chosen absolute constant λ̄ > 0, this
update indeed ensures that (x+, s+) ∈ Xo ×So and p(x+, s+) ≤ p(x, s)− δ,
where δ > 0 depends solely on λ̄. Note that the same is true for the
‘symmetric’ updating obtained by similar construction with the primal and
dual problems swapped, and one is welcome to use the better (the one with
a larger reduction in the potential) of these two updates or their line-search
augmentations.

2.4. The calculus of self-concordant barriers

The practical significance of the nice results we have described depends
heavily on our ability to equip the problem we are interested in (a convex
program (2.1), or a primal–dual pair of conic programs (2.19)) with self-
concordant barrier(s). In principle this can always be done: every closed
convex domain X ⊂ R

n admits an O(1)n-scb; when the domain is a cone,
this barrier can be chosen to be logarithmically homogeneous. Assuming
without loss of generality that X does not contain lines, one can take as
such a barrier the function

F (x) = O(1) lnmesn{y : yT (z − x) ≤ 1, ∀z ∈ X},
where mesn denotes n-dimensional (Jordan or Lebesgue) measure. This
function has a transparent geometric interpretation: the set whose measure
we are taking is the polar of X − x. When X is a cone (closed, convex,
containing no lines and with a non-empty interior), the universal barrier

given by the expression above is automatically logarithmically homogeneous.
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From a practical perspective, the existence theorem just formulated is not of
much interest – the universal barrier is usually pretty difficult to compute,
and in the rare cases when this is possible, it may be non-optimal in terms of
its self-concordance parameter. Fortunately, there exists a simple and fully
algorithmic ‘calculus’ of self-concordant barriers which allows us to build
systematically explicit efficiently computable scbs for seemingly all generic
convex programs associated with ‘computationally tractable’ domains. We
start with the list of the most basic rules (essentially, the only ones needed
in practice) of ‘self-concordant calculus’.

A If F is a ϑ-scb for X and α ≥ 1, then αF is an (αϑ)-scb for X.

B Direct products. Let Fi, i = 1, . . . , m, be ϑi-scbs for closed convex
domains Xi ⊂ R

ni . The ‘direct sum’ F (x1, . . . , xm) =
∑

i Fi(x
i) of

these barriers is a (
∑

i ϑi)-scb for the direct product X = X1×· · ·×Xm

of the sets.

C Intersection. Let Fi, i = 1, . . . , m, be ϑi-scbs for closed convex do-
mains Xi ⊂ R

n, and let the set X =
⋂

i Xi possess a non-empty inte-
rior. Then F (x) =

∑
i Fi(x) is a (

∑
i ϑi)-scb for X.

D Inverse affine image. Let F be a ϑ-scb for a closed convex domain
X ⊂ R

n, and y �→ Ay+b : R
k → R

n be an affine mapping whose image
intersects int X. Then the function G(y) = F (Ay + b) is a ϑ-scb for
the closed convex domain Y = {y : Ay + b ∈ X}.

When the operands in the rules are cones and the original scbs are log-
arithmically homogeneous, so are the resulting barriers (in the case of D,
provided that b = 0). All the statements remain true when, instead of scbs,
we are speaking about sc functions; in this case, the parameter-related parts
should be skipped, and what remains become statements on preserving self-
concordance.

Essentially all we need in addition to the outlined (and nearly evident)
elementary calculus rules, are two more advanced rules, as follows.

E Taking the conic hull. Let X ⊂ R
n be a closed convex domain and let

F be a ϑ-scb for X. Then, with a properly chosen absolute constant
κ, the function F+(x, t) = κ[F (x/t)−2ϑ ln t] is a 2κϑ-scb for the conic
hull

X+ := cl
{
(x, t) ∈ R

n × R : t > 0, x/t ∈ intX
}

of X.

To present the last calculus rule, which can be skipped on a first reading, we
need to introduce the notion of compatibility, as follows. Let K ⊂ R

N and
G− ⊆ R

n be a closed convex cone and a closed convex domain, respectively,
let β ≥ 1, and let A(x) : intG− → R

N be a mapping. We say that A
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is β-compatible with K, if A is three times continuously differentiable on
intG−, is K-concave (that is, D2A(x)[h, h] ∈ −K for all x ∈ intG− and all
h ∈ R

n) and

D3A(x)[h, h, h] ≤K −3βD2A(x)[h, h]

for all x ∈ intG− and h ∈ R
n with x ± h ∈ G−, where a ≤K b means that

b − a ∈ K. The calculus rule in question reads as follows.

F Let G− ⊂ R
n, G+ ⊂ R

N be closed convex domains and A : intG− →
R

N be a mapping, β-compatible with the recession cone of G+, whose
image intersects int G+. Given ϑ±-scbs F± for G+ and G−, respec-
tively, let us define F : Xo := {x ∈ intG− : A(x) ∈ intG+} → R by

F (x) = F+(A(x)) + β2F−(x).

Then F is a (ϑ+ + β2ϑ−)-scb for X = cl Xo.

The most non-trivial and important example of a mapping which can be
used in the context of rule E is the fractional-quadratic substitution. Specif-
ically, let T , E, F be Euclidean spaces, let Q(x, z) : E × E → F be a sym-
metric bilinear mapping, and let A(t) be a symmetric linear operator on E,
affinely depending on t ∈ T , and such that the bilinear form Q(A(t)x, z)
on E × E is symmetric in x, z for every t ∈ T . Further, let K be a closed
convex cone in F such that Q(x, x) ∈ K for all x, and let H be a closed
convex domain in T such that A(t) is positive definite for all t ∈ intH. It
turns out that the mapping A(y, x, t) = y−Q([A(t)]−1x, x) with the domain
F × E × intH is 1-compatible with K.

It turns out (see examples in Nesterov and Nemirovski (1994) and Ne-
mirovski (2004)) that the combination rules A–F used ‘from scratch’ (from
the sole observation that the function − lnx is a 1-lhscb for the non-nega-
tive ray) permit one to build ‘good’ scbs/lhscbs almost without calculation
for all interesting convex domains/cones, including epigraphs of numerous
convex functions (e.g., the elementary univariate functions such as powers
and the exponential, and the multivariate p-norms), sets given by finite sys-
tems of convex linear and quadratic inequalities, and much more. This list
includes, in particular, ϑ-lhscbs underlying:

(a) the non-negative orthant R
n
+ (F (x) = −∑

j lnxj , ϑ = n),

(b) Lorentz cones

Lq = {(ξ, x) ∈ R×R
q : ξ ≥ ‖x‖2} (F (ξ, x) = − ln(ξ2 − xT x), ϑ = 2),

(c) semidefinite cones S
p
+ (the cone of all symmetric positive definite ma-

trices of order p) (F (x) = − ln det(x), ϑ = p), and

(d) matrix norm cones {(ξ, x) : ξ ≥ 0, x ∈ R
p×q : ξ2Iq � xT x} (assuming

without loss of generality p ≥ q, F (ξ, x) = − ln det(ξIq−ξ−1xT x)−ln ξ,
ϑ = q + 1).
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With regard to (a)–(d), (a) is self-evident, and the remaining three bar-
riers can be obtained from (a) and F, without calculations, via the above
result on fractional-quadratic substitution. For example, to get (b), we set
T = F = R, E = R

n = R
n×1, Q(x, z) = xT z, A(ξ) = ξIn, K = H = R+,

thus concluding that the mapping A(y, x, ξ) = y − ξ−1xT x with the do-
main intG−, G− = {y ∈ R} × {x ∈ R

n} × {ξ ≥ 0}, taking values in R,
is 1-compatible with K = R+. Applying F to G− and with G+ = R+,
F−(y, x, ξ) = − ln ξ, F+(s) = − ln s, and using (a) and D to conclude that
F− and F+ are scbs for G− and G+ with the parameters ϑ− = ϑ+ = 1,
we see that − ln(y − ξ−1xT x) − ln ξ is a 2-scb for the set {(y, x, ξ) : yξ ≥
xT x, y, ξ ≥ 0}. It remains to note that Ln is the inverse affine image of the
latter set under the linear mapping (ξ, x) �→ (ξ, x, ξ), and to apply D.

Note that (a)–(c) combine with B to induce lhscbs for the direct products
K of non-negative rays, Lorentz and semidefinite cones. All cones K one
can get in this fashion are self-dual, and the resulting barriers F turn out to
be ‘self-symmetric’ (F∗(·) = F (·) + constK), thus giving rise to primal–dual
IPMs for linear, conic quadratic, and semidefinite programming. Moreover,
it turns out that the barriers in question are ‘optimal’, with provably mini-
mum possible values of the self-concordance parameter ϑ.

3. Conic optimization

Here we treat in more detail the case of the primal–dual conic problems in
(2.19). We restate the primal problem:

min
x

cT x

(P ) Ax = b,

x ∈ K,

where again c ∈ R
n, A ∈ R

m×n, b ∈ R
m, and K is a closed convex cone

in R
n. We call this the conic programming problem in primal or standard

form, since when K is the non-negative orthant, it becomes the standard-
form linear programming problem.

Recall the dual cone defined by

K∗ := {s ∈ R
n : sT x ≥ 0, for all x ∈ K}. (3.1)

Then we can construct the conic programming problem in dual form using
the same data:

max
y,s

bT y

(D) AT y + s = c,

s ∈ K∗,

with y ∈ R
m, where we have introduced the dual slack variable s to make



Interior-point methods for optimization 211

the later analysis cleaner. In terms of the variables y, we have the conic
constraints c−AT y ∈ K∗, corresponding to the linear inequality constraints
c − AT y ≥ 0 when (P ) is the standard linear programming problem.

In fact, it is easy to see that (D) is the Lagrangian dual

max
y

{
min
x∈K

{cT x − (Ax − b)T y}
}

of (P ), using the fact that min{uT x : x ∈ K} is 0 if u ∈ K∗ and −∞
otherwise. We can also easily check weak duality, as follows.

Proposition 3.1. If x is feasible in (P ) and (y, s) in (D), then

cT x ≥ bT y,

with equality if and only if sT x = 0.

Proof. Indeed,

cT x − bT y = (AT y + s)T x − (Ax)T y = sT x ≥ 0, (3.2)

with the inequality following from the definition of the dual cone.

In the case of linear programming, when K (and then also K∗) is the non-
negative orthant, then whenever (P ) or (D) is feasible, we have equality of
their optimal values (possibly ±∞), and if both are feasible, we have strong
duality: no duality gap, and both optimal values attained.

In the case of more general conic programming, these properties no longer
hold (we will provide examples in the next subsection), and we need fur-
ther regularity conditions. Nesterov and Nemirovski (1994, Theorem 4.2.1)
derive the next result.

Theorem 3.1. If either (P ) or (D) is bounded and has a strictly feasible
solution (i.e., a feasible solution where x (respectively, s) lies in the interior
of K (respectively, K∗)), then their optimal values are equal. If both have
strictly feasible solutions, then strong duality holds.

The existence of an easily stated dual problem provides one motivation
for considering problems in conic form (but its usefulness depends on hav-
ing a closed form expression for the dual cone). We will also see that many
important applications naturally lead to conic optimization problems. Fi-
nally, there are efficient primal–dual interior-point methods for this class of
problems, or at least for important subclasses.

In Section 3.1, we consider several interesting special cases of (P ) and
(D). Section 3.2 discusses path-following interior-point methods. In Sec-
tion 3.3, we consider a special class of conic optimization problems allowing
symmetric primal–dual methods. Finally, Section 3.4 addresses recent ex-
tensions.
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3.1. Examples of conic programming problems

First of all, it is worth pointing out that any convex programming problem
can be put into conic form. Without loss of generality, after introducing a
new variable if necessary to represent a convex nonlinear objective function,
we can assume that the original problem is

min
x

{cT x : x ∈ X},

with X a closed convex subset of R
n. This is equivalent to the conic opti-

mization problem, but for one dimension higher:

min
x,ξ

{cT x : ξ = 1, (x, ξ) ∈ K},

where K := cl{(x, ξ) ∈ R
n × R : ξ > 0, x/ξ ∈ X}. However, this for-

mal equivalence may not be very useful practically, partly because K and
K∗ may not be easy to work with. More importantly, even if we have a
good self-concordant barrier for X, it may be hard to obtain an efficient
self-concordant barrier for K (although general, if usually overconservative,
procedures are available: see rule E in Section 2.4 and Freund, Jarre and
Schaible (1996)).

Let us turn to examples with very concrete and useful cones. The first
example is of course linear programming, where K = R

n
+. Then it is easy to

see that K∗ is also R
n
+, and so the dual constraints are just AT y ≤ c. The

significance and wide applicability of linear programming are well known.
Our first case with a non-polyhedral cone is what is known as second-order

cone programming (SOCP). Here K is a second-order, or Lorentz, or ‘ice-
cream’ cone,

Lq := {(ξ, x̄) ∈ R × R
q : ξ ≥ ‖x̄‖},

or the product of such cones. It is not hard to see, using the Cauchy–
Schwarz inequality, that such cones are also self-dual, i.e., equal to their
duals. We now provide an example showing the usefulness of SOCP prob-
lems (many more examples can be found in Lobo, Vandenberghe, Boyd and
Lebret (1998) and in Ben-Tal and Nemirovski (2001)), and also a particular
instance demonstrating that strong duality does not always hold for such
problems.

Suppose we are interested in solving a linear programming problem
max{bT y : AT y ≤ c}, but the constraints are not known exactly: for the jth
constraint aT

j y ≤ cj , we just know that (cj ; aj) ∈ {(c̄j ; āj)+Pjuj : ‖uj‖ ≤ 1},
an ellipsoidal uncertainty set centred at the nominal values (c̄j ; āj). (We use
the MATLAB-like notation (u; v) to denote the concatenation of the vec-
tors u and v.) Here Pj is a suitable matrix that determines the shape and
size of this uncertainty set. We would like to choose our decision variable
y so that it is feasible no matter what the constraint coefficients turn out



Interior-point methods for optimization 213

to be, as long as they are in the corresponding uncertainty sets; with this
limitation, we would like to maximize bT y. This is (a particular case of)
the so-called robust linear programming problem. Since the minimum of
cj − aT

j y = (cj ; aj)
T (1;−y) over the jth uncertainty set is

(c̄j ; āj)
T (1;−y) + min{(Pjuj)

T (1;−y) : ‖uj‖ ≤ 1}
= (c̄j ; āj)

T (1;−y) − ‖P T
j (1;−y)‖,

this robust linear programming problem can be formulated as

max bT y

−c̄j + āT
j y + sj1 = 0, j = 1, . . . , m,

P T
j (1;−y) + s̄j = 0, j = 1, . . . , m,

(sj1; s̄j) ∈ Kj , j = 1, . . . , m,

where each Kj is a second-order cone of appropriate dimension. This is a
SOCP problem in dual form.

Next, consider the SOCP problem in dual form with data

A =

(
−1 0 −1
−1 0 1

)
, b =

(
−1
0

)
, c =




0
1
0



,

and K the second-order cone in R
3. It can be checked that y is feasible

in (D) if and only if y1 and y2 are positive, and 4y1y2 ≥ 1. Subject to
these constraints, we wish to maximize −y1, so the problem is feasible, with
objective function bounded above, but there is no optimal solution! In this
case, the optimal values of primal and dual are equal: (ξ; x̄) = (1/2; 0; 1/2)
is the unique feasible solution to (P ), with zero objective function value.

The second class of non-polyhedral cones we consider gives rise to semi-
definite programming problems. These correspond to the case when K is the
cone of positive semidefinite matrices of a given order (or possibly a Carte-
sian product of such cones). Here we will restrict ourselves to the case of real
symmetric matrices, and we use Sp to denote the space of all such matrices
of order p. Of course, this can be identified with R

n for n := p(p + 1)/2,
by making a vector from the entries mii and

√
2mij , i < j. We use the

factor
√

2 so that the usual scalar product of the vectors corresponding to
two symmetric matrices U and V equals the Frobenius scalar product

U • V := Tr(UT V ) =
∑

i,j

uijvij

of the matrices. However, we will just state these problems in terms of the
matrices for clarity. We write S

p
+ for the cone of (real symmetric) positive

semidefinite matrices, and sometimes write X � 0 to denote that X lies in
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this cone for appropriate p. As in the case of the non-negative orthant and
the second-order cone, S

p
+ is self-dual. This can be shown using the spectral

decomposition of a symmetric matrix. We note that the case of complex
Hermitian positive semidefinite matrices can also be considered, and this is
important in some applications.

In matrix form, the constraint AX = b is defined using an operator A
from Sp to R

m, and we can find matrices Ai ∈ Sp, i = 1, . . . , m, so that
AX = (Ai•X)m

i=1; AT is then the adjoint operator from R
m to Sp defined by

AT y =
∑

i yiAi. The primal and dual semidefinite programming problems
then become

minC • X, Ai • X = bi, i = 1, . . . , m, X � 0, (3.3)

and

max bT y,
∑

i

yiAi + S = C, S � 0. (3.4)

Once again, we give examples of the importance of this class of conic
optimization problems, and also an instance demonstrating the failure of
strong duality.

Let us first describe a very simple example that illustrates techniques
used in optimal control. Suppose we have a linear dynamical system

ż(t) = A(t)z(t),

where the p×p matrices A(t) are known to lie in the convex hull of a number
A1, . . . , Ak of given matrices. We want conditions that guarantee that the
trajectories of this system stay bounded. Certainly a sufficient condition
is that there is a positive definite matrix Y ∈ Sp so that the Lyapunov
function L(z(t)) := z(t)T Y z(t) remains bounded. And this will hold as long
as L̇(z(t)) ≤ 0. Now using the dynamical system, we find that

L̇(z(t)) = z(t)T (A(t)T Y + Y A(t))z(t),

and since we do not know where the current state might be, we want
−A(t)T Y − Y A(t) to be positive semidefinite whatever A(t) is, and so we
are led to the constraints

−AT
i Y − Y Ai � 0, i = 1, . . . , k, Y − Ip � 0,

where the last constraint ensures that Y is positive definite. (Here Ip denotes
the identity matrix of order p. Since the first constraints are homogeneous
in Y , we can assume that Y is scaled so its minimum eigenvalue is at least
1.) To make an optimization problem, we could for instance minimize the
condition number of Y by adding the constraint ηIp − Y � 0 and then
maximizing −η. This is a semidefinite programming problem in dual form.
Note that the variables y are the entries of the symmetric matrix Y and the
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scalar η, and the cone is the product of k+2 copies of S
p
+. We can similarly

find sufficient conditions for z(t) to decay exponentially to zero.
Our second example is a relaxation of a quadratic optimization problem

with quadratic constraints. Notice that we did not stipulate that the prob-
lem be convex, so we can include constraints like x2

j = xj , which implies
that xj is 0 or 1, i.e., we have included binary integer programming prob-
lems. Any quadratic function can be written as a linear function of a certain
symmetric matrix (depending quadratically on x). Specifically, we see that

α + 2bT x + xT Cx =

(
1
x

)T (
α bT

b C

)(
1
x

)

=

(
α bT

b C

)
•
((

1
x

)(
1
x

)T)

=

(
α bT

b C

)
•
(

1 xT

x xxT

)
.

The set of all matrices
(

1 xT

x xxT

)
is certainly a subset of the set of all positive

semidefinite matrices with top left entry equal to 1, and so we can obtain a
relaxation of the original hard problem in x by optimizing over a matrix X
that is subject to the constraints defining this superset. This technique has
been very successful in a number of combinatorial problems, and has led to
worthwhile approximations to the stable set problem, various satisfiability
problems, and notably the max-cut problem. Further details can be found,
for example, in Goemans (1997) and Ben-Tal and Nemirovski (2001).

Let us give an example of two dual semidefinite programming problems
where strong duality fails. The primal problem is

min
X�0




0 0 0
0 0 0
0 0 1



 • X,




1 0 0
0 0 0
0 0 0



 • X = 0,




0 1 0
1 0 0
0 0 2



 • X = 2,

where the first constraint implies that x11, and hence x12 and x21, are zero,
and so the second constraint implies that x33 is 1. Hence one optimal
solution is X = Diag(0; 0; 1) with optimal value 1. The dual problem is

max 2y2, S =




0 0 0
0 0 0
0 0 1



− y1




1 0 0
0 0 0
0 0 0



− y2




0 1 0
1 0 0
0 0 2



 � 0,

so the dual slack matrix S has s22 = 0, implying that s12 and s21 must
be zero, so y2 must be zero. So an optimal solution is y = (0; 0) with
optimal value 0. Hence, while both problems have optimal solutions, their
optimal values are not equal. Note that neither problem has a strictly
feasible solution, and arbitrary small perturbations in the data can make
the optimal values jump.



216 A. S. Nemirovski and M. J. Todd

3.2. Basic interior-point methods for conic problems

Recall that, for conic problems, we want to use logarithmically homogeneous
scbs, those satisfying (2.16):

F (τx) = F (x) − ϑ ln τ.

Examples of such ϑ-lhscbs are

F (x) := −
∑

j

lnxj , x ∈ int R
n
+,

F (ξ; x̄) := − ln(ξ2 − ‖x̄‖2), (ξ; x̄) ∈ intLq,

F (X) := − ln detX, X ∈ intSp
+,

as in Section 2.4, with values of ϑ equal to n, 2, and p respectively. Each
of these cones is self-dual, and it is easy to check that the corresponding
dual barriers are F∗(s) = F (s) − n, F∗(σ; s̄) = F (σ; s̄) + 2 ln 2 − 2, and
F∗(S) = F (S) − p.

Henceforth, F and F∗ are ϑ-lhscbs for the cones K and K∗ respectively.
The key properties of such functions are listed after (2.16) and in Proposi-
tion 2.1, and from these we easily obtain the following result.

Proposition 3.2. For x ∈ intK, s ∈ intK∗, and positive t, we have

s + t−1∇F (x) = 0 if and only if x + t−1∇F∗(s) = 0,

and if these hold,

sT x = t−1ϑ and t−1∇2F∗(s) = [t−1∇2F (x)]−1. (3.5)

Proof. If ts = −∇F (x), x = −∇F∗(ts) since −∇F and −∇F∗ are inverse
bijections. Using the homogeneity of ∇F∗, we obtain x + t−1∇F∗(s) = 0.
The reverse implication follows the same reasoning. If ts = −∇F (x), then
sT x = −t−1∇F (x)T x = t−1ϑ by (2.17) and ∇2F∗(ts) = [∇2F (x)]−1, and
the final claim follows from the homogeneity of ∇2F∗ of degree −2.

We now examine in more detail the path-following methods described in
Section 2.3, both to see the computation involved and to see how these
basic methods can be modified in some cases for increased efficiency. We
assume that both (P ) and (D) have strictly feasible solutions available. As
we noted, the basic primal path-following algorithm can be applied to the
restriction of F to the relative interior of {x ∈ K : Ax = b}, which amounts
to tracing the path of solutions for positive t to the primal barrier problems:

min
x

tcT x + F (x)

(PB t) Ax = b,

x ∈ K.
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If we associate Lagrange multipliers λ ∈ R
m with the constraints, and then

define y := −t−1λ, we see that the optimality conditions for (PB t) are

t(c − AT y) + ∇F (x) = 0, Ax = b, x ∈ intK.

Since −∇F maps intK into intK∗, we see that s := c−AT y lies in intK∗,
and so we have

AT y + s = c, s ∈ intK∗,

Ax = b, x ∈ intK,

∇F (x) + ts = 0.

(3.6)

These equations define the primal–dual central path {(x∗(t), s∗(t))} as in
Section 2.3. Note also that, using (3.2) and (3.5), the duality gap associ-
ated with x∗(t) and (y∗(t), s∗(t)) is s∗(t)

T x∗(t) = t−1ϑ. In view of Propo-
sition 3.2, the conditions above are remarkably symmetric. Indeed, let us
consider the dual barrier problem

min
y,s

−tbT y + F∗(s)

(DB t) AT y + s = c,

s ∈ intK∗.

If we associate Lagrange multipliers µ ∈ R
n with the constraints, and then

define x := t−1µ, we see that the optimality conditions for (DB t) are

−tb + tAx = 0, ∇F∗(s) + tx = 0, AT y + s = c, s ∈ intK∗.

We can now conclude that x ∈ intK, and so the optimality conditions
can be written as (3.6) again, where the last equation is replaced by its
equivalent form tx + ∇F∗(s) = 0.

This nice symmetry is not preserved at first sight when we consider
Newton-like algorithms to trace the central path. Suppose we have strictly
feasible solutions x and (y, s) to (P ) and (D), approximating a point on the
central path: (x, y, s) ≈ (x∗(t), y∗(t), s∗(t)) for some t > 0. We wish to find
strictly feasible points approximating a point further along the central path,
say corresponding to t+ > t. Let us make a quadratic approximation to the
objective function in (PB t+); for future analysis, we use the Hessian of F
at a point v ∈ intK which may or may not equal x. If we let the variable
be x+ =: x + ∆x, we have

min
∆x

t+cT ∆x + ∇F (x)T ∆x + 1
2∆xT∇2F (v)∆x

(PQP) A∆x = 0.

Let λ̄ ∈ R
m be the Lagrange multipliers for this problem, and define ȳ+ :=

−t−1
+ λ̄. Then the optimality conditions for (PQP) can be written as

t+(c − AT ȳ+) + ∇F (x) + ∇2F (v)∆x = 0, A∆x = 0,
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and if we define ∆y := ȳ+ − y and ∆s := −AT ∆y, we obtain

AT ∆y + ∆s = 0,

(PQPOC ) A∆x = 0,

t−1
+ ∇2F (v)∆x + ∆s = −s − t−1

+ ∇F (x).

This system also arises as giving the Newton step for (3.6) with t+ replacing
t, where ∇2F (v) is used instead of ∇2F (x). We will discuss the solution of
this system of equations after comparing it with the corresponding system
for the dual problem.

Hence let us make a quadratic approximation to the objective function
of (DB t+), again evaluating the Hessian of F∗ at a point u ∈ intK∗ which
may or may not equal s for future analysis. If we make the variables of the
problem y+ =: y + ∆y and s+ =: s + ∆s, we obtain

min
∆y,∆s

−t+bT ∆y + ∇F∗(s)
T ∆s + 1

2∆sT∇2F∗(u)∆s

(DQP) AT ∆y + ∆s = 0.

Let µ̄ ∈ R
n be the Lagrange multipliers for (DQP), and define x̄+ := t−1

+ µ̄.
Then the optimality conditions become

−t+(b−Ax̄+) = 0, ∇F∗(s) +∇2F∗(u)∆s + t+x̄+ = 0, AT ∆y + ∆s = 0.

Writing ∆x := x̄+ − x, we obtain

AT ∆y + ∆s = 0,

(DQPOC ) A∆x = 0,

∆x + t−1
+ ∇2F∗(u)∆s = −x − t−1

+ ∇F∗(s).

We note that this system can also be viewed as a Newton-like system for a
modified form of (3.6), where t+x +∇F∗(s) = 0 replaces ts +∇F (x) = 0 as
the final equation. From this viewpoint, a natural way to adapt the methods
to the case where x or (y, s) is not a strictly feasible solution of (P ) or (D)
is apparent. As long as x ∈ intK and s ∈ intK∗, we can define search direc-
tions using (PQPOC ) or (DQPOC ) where the zero right-hand sides in the
first two equations are replaced by the appropriate residuals in the equal-
ity constraints. These so-called infeasible-interior-point methods are simple
and much used in practice, although their analysis is hard. Polynomial-
time complexity for linear programming was established by Zhang (1994)
and Mizuno (1994). The other possibility to deal with infeasible iterates is
to use a self-dual embedding: see the references in Section 2.3.

There is clearly a strong similarity between the conditions (PQPOC ) and
(DQPOC ), but they will only define the same directions (∆x = ∆x and
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(∆y, ∆s) = (∆y, ∆s)) under rather strong hypotheses, for example, if

t−1
+ ∇2F∗(u) = [t−1

+ ∇2F (v)]−1, (3.7)

t−1
+ ∇2F (v)(−x − t−1

+ ∇F∗(s)) = −s − t−1
+ ∇F (x). (3.8)

Using Proposition 3.2, this holds if v = x = x∗(t+) and u = s = s∗(t+), but
in this case all the directions are zero and it is pointless to solve the systems!
(It also holds if (t+/t)1/2v = x = x∗(t) and (t+/t)1/2u = s = s∗(t), again a
very special situation.) In the next subsection, we will describe situations
where the equations above hold for any x and s by suitable choice of u
and v.

The solution to (PQPOC ) can be obtained by solving for ∆s in terms of
∆y and then ∆x in terms of ∆s. Substituting in the equation A∆x = 0, we
see that we need to solve

(A[∇2F (v)]−1AT )∆y = A[∇2F (v)]−1(s + t−1
+ ∇F (x). (3.9)

Let us examine the form of these equations in the cases of linear and semidef-
inite programming. (The analysis for the second-order cone is also straight-
forward, but the formulae are rather cumbersome.) In the first case, ∇2F (v)
for the usual log barrier function becomes [Diag(v)]−2 and ∇F (x) becomes
−[Diag(x)]−1e, with e a vector of ones. Hence (3.9) can be written

(A[Diag(v)]2AT )∆y = A[Diag(v)]2s − t−1
+ A[Diag(v)]2[Diag(x)]−1e.

In the large sparse case, the coefficient matrix in the equation above can
be formed fairly cheaply and usually retains some of the sparsity of A;
its Cholesky factorization can be obtained somewhat cheaply. The typically
very low number of iterations required then compensates to a large extent for
the iterations being considerably more expensive than pivots in the simplex
method. (Indeed, for the primal–dual algorithms of the next subsection, 10
to 50 iterations almost always provide 8 digits of accuracy, even for very
large LP problems.)

In the case of semidefinite programming, A can be thought of as an oper-
ator from symmetric matrices to R

m and AT as the adjoint operator from
R

m to the space of symmetric matrices; see the discussion preceding (3.3).
With the usual log determinant barrier function, ∇2F (V ) maps a symmetric
matrix Z to V −1ZV −1 and ∇F (X) is −X−1, so (3.9) becomes

Ai •
∑

j

(V AjV )∆yj = Ai • (V SV − t−1
+ V X−1V ), i = 1, . . . , m.

If we take V = X, as seems natural, then there is a large cost in even
forming the m × m matrix with ijth entry Ai • (XAjX): the Ais may well
be sparse, but X is frequently not, and then we must compute the Cholesky
factorization of the resulting usually dense matrix.

Let us return to the general case. Computing ∆x in this way using v = x
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gives the primal path-following algorithm. We could also use ∆y and ∆s to
update the dual solution, but it is easily seen that in fact ∆x is independent
of y and s as long as AT y + s = c, so that the ‘true’ iterates are in x-
space. However, updating the dual solution (if feasible) does give an easy
way to determine the quality of the primal points generated. If the Newton
decrement for t (i.e.,

√
∆xT∇2F (x)∆x, where ∆x is computed with t+ = t)

is small, then updating t+ as in (2.14) and then using a damped Newton
step will yield an updated primal point x+ at which the Newton decrement
for t+ is also small (and the updated dual solution will be feasible). In
practice, heuristics may be used to choose much longer steps and accept
points whose Newton decrement is much larger.

A similar analysis for (DQPOC ) leads to the equations

(A∇2F∗(u)AT )∆y = t+Ax + A∇F∗(s).

Here it is more apparent that the dual direction (∆y, ∆s) is independent of
x as long as Ax = b, so this is a pure dual path-following method, although
again primal iterates can be carried along to assess the quality of the dual
iterates. In the case of linear programming, the coefficient matrix takes
the form A[Diag(u)]−2AT , while for semidefinite programming it becomes
(Ai • (U−1AjU

−1))m
i,j=1.

In the next subsection we consider the case that leads to a symmetric
primal–dual path-following algorithm. This requires the notion of self-scaled
barrier introduced by Nesterov; further details can be found in Nesterov and
Todd (1997, 1998).

3.3. Self-scaled barriers and cones and symmetric primal–dual algorithms

Let us now consider barriers that satisfy a further property: a ϑ-lhscb F
for K is called a ϑ-self-scaled barrier (ϑ-ssb) if, for all v ∈ intK, ∇2F (v)
maps intK to intK∗ and

(∀v, x ∈ intK)F∗(∇2F (v)x) = F (x) − 2F (v) − ϑ. (3.10)

If a cone admits such an ssb, we call it a self-scaled cone. It is easy to check
that the three barriers we introduced above for the non-negative, Lorentz,
and semidefinite cones are all self-scaled, and so these cones are self-scaled.
Moreover, in these examples, v can be chosen so that ∇2F (v) is the identity,
so (as we saw) F∗ differs from F by a constant.

The condition above implies many other strong properties: the dual bar-
rier F∗ is also self-scaled; for all v ∈ intK, ∇2F (v) maps intK onto intK∗;
and we have the following result.

Theorem 3.2. If F is a ϑ-ssb for K, then for every x ∈ intK and s ∈
intK∗, there is a unique w ∈ intK such that

∇2F (w)x = s.
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Moreover,

∇2F (w)∇F∗(s) = ∇F (x) and ∇2F (w)∇2F∗(s)∇2F (w) = ∇2F (x).

We call w the scaling point for x and s. Clearly, −∇F (w) is the scaling
point (using F∗) for s and x. Tunçel (1998) found a more symmetric form
of the equation (3.10) defining self-scaled barriers: if ∇2F (v)x = −∇F (z)
for v, x, z ∈ intK, then F (v) = (F (x) + F (z))/2, and by the result above
we also have ∇2F (v)z = −∇F (x).

The properties above imply that the cone K is symmetric: it is self-dual ,
since K and K∗ are isomorphic by the non-singular linear mapping ∇2F (v)
for any v ∈ intK; and it is homogeneous, since there is an automorphism of
K taking any point x1 of intK into any other such point x2. Indeed, we can
choose the automorphism [∇2F (w2)]

−1∇2F (w1), where wi is the scaling
point for xi and some fixed s ∈ intK∗, i = 1, 2. Symmetric cones have
been much studied and even characterized: see the comprehensive book of
Faraut and Koranyi (1994). They also coincide with cones of squares in
Euclidean Jordan algebras. These connections were established by Güler
(1996). Because of this connection, we know that self-scaled cones do not
extend far beyond the cones we have considered: non-negative, Lorentz, and
semidefinite cones, and Cartesian products of these.

Let us now return to the conditions (3.7) and (3.8) for (PQPOC ) and

(DQPOC ) to define identical directions. If we set ū := t
1/2
+ u and v̄ := t

1/2
+ v,

these can be rewritten as

∇2F∗(ū) = [∇2F (v̄)]−1, ∇2F (v̄)(−x − t−1
+ ∇F∗(s)) = −s − t−1

+ ∇F (x).

When F is self-scaled, these conditions can be satisfied by setting v̄ to be
the scaling point for x and s, and ū (equal to −∇F (v̄)) to be the scaling
point (for F∗) for s and x. (Notice that, if (x, s) = (x∗(t), s∗(t)), then these
scaling points are t−1/2x and t−1/2s respectively, and, except for a scalar
multiple, we come back to the primal (or dual) direction.)

Let us describe the resulting symmetric primal–dual short-step path-
following algorithm. We need a symmetric measure of proximity to the cen-
tral path. Hence, for x and (y, s) strictly feasible solutions to (P ) and (D),
define

t := t(x, s) :=
ϑ

sT x
and λ2(x, s) := ‖ts + ∇F (x)‖F,x.

It can be shown (Nesterov and Todd 1998, Section 3) that λ2(x, s) = ‖tx +
∇F∗(s)‖F∗,s also. Suppose x and s are such that

λ2(x, s) ≤ 0.1,

and we choose

t+ := (1 + 0.06ϑ−1/2)t.
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We compute the scaling point w for x and s, and let ∆x, ∆y, and ∆s be

the solution to (PQPOC ) with v := t
−1/2
+ w (or equivalently to (DQPOC )

with u := −t
−1/2
+ ∇F (w)). Finally, we set x+ := x + ∆x and (y+, s+) :=

(y+∆y, s+∆s). It can be shown (Nesterov and Todd 1998, Section 6) that

t(x+, s+) = t+ and λ2(x+, s+) ≤ 0.1,

so we can continue the process.

Theorem 3.3. Suppose (P ) and (D) have strictly feasible solutions, and
we have a ϑ-ssb F for K. Suppose further we have a strictly feasible pair
x0, (y0, s0) for (P ) and (D) with λ2(x0, s0) ≤ 0.1. Then the algorithm
described above (with xk+1 and (yk+1, sk+1) derived from xk and (yk, sk)
as are x+ and (y+, s+) from x and (y, s)) is well-defined (all iterates are
strictly feasible), maintains closeness to the path (λ2(xk, sk) ≤ 0.1 for all k)
and has the efficiency estimate

cT xk − bT yk = sT
k xk =

ϑ

tk
≤ sT

0 x0 exp

{
−0.05√

ϑ
k

}
.

Hence, for every ǫ > 0, it takes at most

O(1)
√

ϑ ln

(
sT
0 x0

ǫ

)

iterations to obtain strictly feasible solutions with duality gap at most ǫ.

Thus we have obtained an algorithm with complexity bounds of the same
order as those for the primal path-following method in Theorem 2.1. In fact,
the constants are a little worse than those for the primal method. However,
it is important to realize that these are worst-case bounds, and that the
primal–dual framework is much more conducive to allowing adaptive algo-
rithms that can give much better results in practice: see, e.g., Algorithms 6.2
and 6.3 in Nesterov and Todd (1998). Part of the reason that long-step algo-
rithms are possible in this context is that approximations of F and of ∇2F
hold for much larger perturbations of a point x ∈ intK. Indeed, results like
(2.5) hold true for any perturbation h with x±h ∈ intK: see Theorems 4.1
and 4.2 of Nesterov and Todd (1997).

There are also symmetric primal–dual potential-reduction algorithms, us-
ing the Tanabe–Todd–Ye function (2.21). Note that

∇xp(x, s) =
ϑ +

√
ϑ

sT x
s + ∇F (x), ∇sp(x, s) =

ϑ +
√

ϑ

sT x
x + ∇F∗(s),

and the coefficient of s (or x) is t+ := (1 + 1/
√

ϑ)t(x, s). Thus Newton-
like steps to decrease the potential function (where the Hessian is replaced
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by t+∇2F (w)) lead to exactly the same search directions as in the path-
following algorithm above. Performing a line search on p in those directions
leads to a guaranteed decrease of at least 0.24 (for details, see Section 8 of
Nesterov and Todd (1997)), and again, this leads to an O(

√
ϑ ln(sT

0 x0/ǫ))-
iteration algorithm from a well-centred initial pair to achieve an ǫ-optimal
pair. The big advantage is that now there is no necessity to stay close to the
central path, and indeed, the initial pair does not have to be well-centred –
the only change is that the complexity bound is modified appropriately.

We now discuss how the scaling point w for x and s can be computed
in the case of the non-negative orthant and the semidefinite cone; for the
Lorentz cone, the computation is again straightforward but cumbersome.
For the non-negative orthant R

n
+, we have ∇2F (w) = [Diag(w)]−2, so we

find the scaling point w for positive vectors x and s is given by

w =
(√

xj/sj

)n

j=1
,

so that the equation to be solved for ∆y is

A Diag(x) [Diag(s)]−1AT ∆y = A(x − t−1
+ [Diag(s)]−1e), (3.11)

leading to the usual LP primal–dual symmetric search direction. The com-
putation required is of the same order as that for the primal or dual methods.

For the semidefinite cone S
p
+, the defining relation ∇2F (w)x = s becomes

W−1XW−1 = S, or WSW = X, for positive definite X and S, from which
we find

W = S−1/2(S1/2XS1/2)1/2S−1/2,

where V 1/2 denotes the positive semidefinite square root of a positive semi-
definite matrix V . Todd, Toh and Tütüncü (1998) show that W can be
computed using two Cholesky factorizations (X = LXLT

X and S = RSRT
S )

and one eigenvalue (of LT
XSLX) or singular value (of RT

SLX) decomposition.
(After W is obtained, ∆y (and hence ∆S and ∆X) can be computed using a
system like that for the primal or dual barrier method, but with W replacing
V or U−1.)

The need for an eigenvalue or singular value decomposition makes each it-
eration of a (path-following or potential-reduction) interior-point algorithm
using the scaling point W quite expensive. While linear and second-order
cone programming problems with hundreds of thousands of variables and
constraints (with favourable sparsity patterns) can be solved in under 5
minutes on a fairly modest PC, semidefinite programming problems with
matrices of order a thousand, even with very favourable structure, can take
up to half an hour. When the matrices are of order two thousand, the times
increase to an hour even for the simplest such problems.

Alternative methods greatly improve the computational time per iter-
ation. The Jordan algebra approach (Faybusovich 1997, Schmieta and
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Alizadeh 2001) replaces the last equation in (3.6) by one exhibiting more
primal–dual symmetry. For linear programming, this is x ◦ s = t−1e, where
◦ denotes the Hadamard or componentwise product. A Newton step for
this leads to the same direction as the self-scaled method. For semidefinite
programming, it gives XS + SX = 2t−1I. Unfortunately, linearizing this
equation to get

(∆XS + S∆X) + (X∆S + ∆SX) = −XS − SX + 2t−1
+ I,

as proposed by Alizadeh, Haeberly and Overton (1997), leads to a system
that requires even more computation than the self-scaled approach, and
does not enjoy scale-invariance properties (see, e.g., Todd et al. (1998)).
Suppose instead the iterates are first scaled (X by pre- and postmultiplying
by S1/2, and S by pre- and postmultiplying by S−1/2) so that the current
iterates are transformed into X̃ = S1/2XS1/2 and S̃ = S−1/2SS−1/2 = I.
If the Alizadeh–Haeberly–Overton approach is followed in the transformed
space, the linearization becomes

2∆X̃ + (X̃∆S̃ + ∆S̃X̃) = −2X̃ + 2t−1
+ I,

or in terms of the original variables after transforming back,

∆X +
1

2
(X∆SS−1 + S−1∆SX) = −X + t−1

+ S−1.

Then the search directions can be obtained after solving the m×m system

Ai •
(∑

j

(XAjS
−1)∆yj

)
= Ai • (X − t−1

+ S−1), i = 1, . . . , m.

This method was developed independently by Helmberg, Rendl, Vanderbei
and Wolkowicz (1996) and Kojima, Shindoh and Hara (1997), and later de-
rived from a different viewpoint by Monteiro (1997). This approach permits
the solution of certain problems with matrices of order two thousand (and
favourable structure) in under twenty minutes. A pure dual barrier method
can also be used successfully on problems of this size with even faster results,
but on some problems it seems not as successful as primal–dual methods.

For truly large semidefinite programming problems, either non-interior-
point methods need to be used (see, e.g., Section 6.3 in Todd (2001)), or iter-
ative techniques employed to solve approximately the linear systems arising
at each iteration (see, e.g., Toh (2007) and Chai and Toh (2007)). For more
information on semidefinite programming, the reader can consult Helm-
berg’s page www-user.tu-chemnitz.de/∼helmberg/semidef.html; software for
linear, second-order cone, and semidefinite programming can be found at
the NEOS solvers site neos.mcs.anl.gov/neos/solvers/index.html.
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3.4. Recent developments

In this final subsection, we describe some recent developments in interior-
point methods for conic optimization. We concentrate on classes of cones
that are more general than self-scaled cones, but that have some structure
that may help in developing efficient interior-point algorithms.

The first class of such cones consists of hyperbolicity cones. These cones
arise in connection with hyperbolic polynomials: a homogeneous polynomial
p on R

n is hyperbolic in direction d ∈ R
n if the univariate polynomial t �→

p(x− td) has only real roots for every x ∈ R
n. The associated hyperbolicity

cone K(p, d) is the set of those x for which all these roots are non-negative.
These objects were first studied in the context of PDEs, but were introduced
to the interior-point community by Güler (1997) because of their generality
and nice properties.

The polynomial p(x) = x1x2 · · ·xn is hyperbolic in direction d for any
positive vector d ∈ R

n, and the associated hyperbolicity cone is the non-
negative orthant. The Lorentz cone arises from x2

1 −
∑n

j=2 x2
j , hyperbolic in

the direction d = (1, 0, . . . , 0)T . Finally, if n = p(p + 1)/2 and we associate
R

n with Sp, the polynomial det(X) is hyperbolic in the direction of the
identity and gives rise to the semidefinite cone. However, the range of
hyperbolicity cones is much larger: Güler (1997) shows, for example, that
it includes (properly) all homogeneous cones.

The significance of this class of cones for interior-point methods is that
F (x) := − ln p(x) is an m-lhscb for the cone K(p, d), where m is the de-
gree of homogeneity of p. This function has very good properties: for any
x, ∇2F (x) takes intK(p, d) into (but not necessarily onto) the interior of its
dual cone; there is a unique scaling point for each x ∈ intK(p, d) and s in the
interior of its dual; and F has good ‘long-step properties’ like those hinted
at below Theorem 3.3 for self-scaled barriers. These results were obtained
by Güler (1997), who showed that long-step primal potential-reduction al-
gorithms could be extended from self-scaled cones to hyperbolicity cones.
However, the dual barrier of a hyperbolic barrier of this kind is itself a hy-
perbolic barrier only if the original barrier was self-scaled. Hence it seems
unlikely that the primal–dual methods of the previous subsection can be
extended to general hyperbolicity cones.

Bauschke, Güler, Lewis and Sendov (2001) study hyperbolic polynomials
from the viewpoint of convex analysis and hence rederive some of Güler’s
results. Of more interest in optimization, Renegar (2006) makes use of an
important property of hyperbolic polynomials, namely, that if p is hyper-
bolic in direction d, then so is the directional derivative dT∇p, and the
hyperbolicity cone of the latter contains that of p. In this way a hierar-
chy of relaxations of a hyperbolicity cone programming problem can be
defined; Renegar suggests a homotopy method to solve the original problem
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by considering solutions to these relaxed problems. At present, there is no
complexity analysis for this approach, but it seems promising.

The second class of cones we wish to mention arises in global polynomial
optimization: that is, one seeks the global minimizer p∗ of a polynomial
function p of n variables, possibly subject to polynomial inequality con-
straints. Here the functions involved need not be convex, and the problem
is NP-hard even for degree-four polynomials, but we would still like to be
able to solve (even approximately) small-scale problems. We describe here
briefly an approach, introduced by Parrilo (2003) and Lasserre (2001), that
uses semidefinite programming problems as approximations.

Let us follow Lasserre in describing a convex formulation of such a poly-
nomial optimization problem. Suppose p is a polynomial of degree 2m in
n variables. Using the notation xα := xα1

1 · · ·xαn
n and |α| :=

∑
j αj , where

α is a non-negative integer n-vector, we can associate p with its vector of
coefficients (pα)|α|≤2m, where

p(x) =
∑

|α|≤2m

pαxα.

The key idea is to replace an optimization problem over the n-vector x
with one over probability measures µ on R

n. Then minimizing p over R
n

can be replaced by minimizing
∫

p(x) dµ(x), which is a convex (even lin-
ear!) function of the infinite-dimensional variable µ. Moreover, since p is a
polynomial, we have ∫

p(x) dµ(x) =
∑

|α|≤2m

pαyα,

where yα is the α-moment of µ,
∫

xα dµ(x). We now have a linear opti-
mization problem over the finite-dimensional vector (yα)|α|≤2m, with the
constraint that this vector be the vector of moments of some probability
measure. The constraint can be separated: we need y to be the vector of
moments of a Borel measure (this defines a convex cone, the moment cone),
and y0 = 1 (this requires the measure to be a probability measure).

Unfortunately (as we would expect from the NP-hardness result), this
convex cone is hard to deal with: in particular, it is very unlikely that a
computationally tractable barrier function for it exists. We would therefore
like to approximate it. Here is one necessary condition, based on a large
matrix whose entries are the components of y. Let us enumerate all

(
m+n

n

)

monomials xβ with |β| ≤ m and use them to index the rows and columns of
a matrix. Let Mm(y) denote the symmetric matrix whose entry in the row
corresponding to xβ and column corresponding to xγ is yβ+γ . Then

Mm(y) � 0.

Indeed, if (qα)|α|≤m is the vector of coefficients of a polynomial q(x) of
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degree m, then qT Mm(y)q is
∫

(q(x))2 dµ(x), which is non-negative. We
can then minimize the linear function

∑
pαyα subject to y0 = 1 and this

semidefinite constraint. This is a relaxation of the original polynomial op-
timization problem and will provide a lower bound.

It turns out that this lower bound is tight exactly when p(x)−p∗ (a poly-
nomial that is non-negative everywhere) can be written as a sum of squares.
Indeed, finding the smallest p̄ such that p(x)− p̄ is a sum of squares can be
formulated as a semidefinite programming problem, and it is precisely the
dual of the problem above. The complication is that, except in very special
cases, the set of non-negative polynomials is larger than the set of sums of
squares (this is related to Hilbert’s 17th problem), but there are results in
semi-algebraic geometry that provide ways to attack the problem. Without
going into details, we merely note that a sequence of semidefinite program-
ming problems can be formulated, whose optimal values approach p∗, and
frequently the value is attained in a finite (and small) number of steps. The
disadvantage is that the sizes of these semidefinite problems grow very fast,
so that only small-scale problems can be solved. Lasserre (2001) gives results
for (constrained) problems with degree up to four and up to 10 variables;
Parrilo and Sturmfels (2003) solve (unconstrained) degree four problems in
13 variables and degree six problems in 7 variables in under half an hour. A
MATLAB package for solving sum of squares optimization problems using
semidefinite programming is available at www.cds.caltech.edu/sostools/.

We described above the polynomial minimization problem as that of min-
imizing

∑
|α|≤2m pαyα, subject to y0 = 1 and (yα)|α|≤2m belonging to the

cone of moments (up to degree 2m) of a Borel measure. It is not hard to
see that the corresponding dual cone consists of the coefficients (qα)|α|≤2m

of polynomials q of degree at most 2m that are non-negative everywhere.
These are two dual convex cones, easy to describe, but hard to deal with
computationally, that are important in applications. Another such pair of
cones arises in copositive programming.

Suppose we wish to minimize the quadratic function xT Qx over the stan-
dard simplex {x ∈ R

n
+ : eT x = 1}, where e ∈ R

n is the vector of ones. This
standard quadratic programming problem includes the problem of comput-
ing a maximum stable set in a graph and can arise in general quadratic
optimization as a test for global optimality (see Bomze (1998)). In fact,
the standard quadratic programming problem can be written as the conic
optimization problem of minimizing Q • X subject to E • X = 1 and X
lying in the cone of completely positive symmetric matrices: those that can
be written as JJT for a non-negative (entrywise) matrix J . Here E := eeT ,
the n × n matrix of ones. This equivalence can be seen by characterizing
the extreme solutions of the latter problem, as in Bomze, de Klerk, Roos,
Quist and Terlaky (2000). The dual of the completely positive cone is eas-
ily shown to be the cone of copositive matrices, i.e., those that are positive
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semidefinite on the non-negative orthant. In turn, these are related to non-
negative quartics: P is copositive if and only if the quartic

∑
i,j pijz

2
i z2

j

is everywhere non-negative. Hence copositive programming (and so also
the standard quadratic programming problem) can be attacked using the
techniques discussed above, introduced by Parrilo and Lasserre. This is a
topic of considerable recent interest: see Bomze and de Klerk (2002) and
the references therein.

4. IPMs for non-convex programming

In this short final section, we sketch the algorithms that have been proposed
for general, not necessarily convex, nonlinear programming. For further
details, see the survey papers of Forsgren et al. (2002) and Gould et al.

(2005); the issues are also nicely treated in Nocedal and Wright (2006).
These methods were inspired by the great success of interior-point meth-
ods for specially structured convex problems, and differ in many respects
from the earlier barrier methods of the 1960s and 1970s. However, since
they are designed for general problems, the motivating concerns are very
different from those for convex optimization: global convergence (possibly
to an infeasible point which is a local minimizer of some measure of in-
feasibility) replaces complexity analysis; superlinear convergence, and the
resulting careful control of the parameter t, is of considerable interest; step-
size control usually involves a merit function; and modifications to Newton
systems are often employed to avoid convergence to stationary points that
are not local minimizers. There are two families of interior-point methods
for nonlinear programming: those based on line searches and those based
on trust regions. Here we restrict ourselves to line-search methods as they
are closer to what we have discussed for convex problems.

For simplicity, we concentrate on the inequality-constrained problem

(NLP) min f(y), g(y) ≤ 0,

where f : R
m → R and g : R

m → R
n are twice continuously differentiable

functions. Other forms of problem are discussed by many of the authors
of the papers cited below, but the main ideas can be illustrated in this
framework. The somewhat unconventional notation is chosen to facilitate
comparison with the dual linear programming problem, where f(y) = −bT y
and g(y) = AT y − c.

The first step is to introduce slack variables to convert the inequality
constraints to the form g(y) + s = 0, s ≥ 0. A barrier method then tries to
find approximate solutions to problems of the form

(NLB t) min tf(y) −
∑

j

ln sj , g(y) + s = 0 (s > 0),
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for positive parameters t increasing to ∞. If we associate Lagrange multi-
pliers λ ∈ R

n to the constraints, and then define x := t−1λ, we find that
the optimality conditions for (NLB t) can be written as

∇f(y) + ∇g(y)x = 0,

g(y) + s = 0,

Diag(x)Diag(s)e = t−1e.

(4.1)

Given a trial solution (y, x, s) with x and s positive, a Newton step towards
a solution of (4.1) will move in the direction (∆y, ∆x,∆s) satisfying




K ∇g(y) 0

∇g(y)T 0 I
0 Diag(s) Diag(x)








∆y
∆x
∆s



 =




−∇f(y) −∇g(y)x

−g(y) − s
t−1e − Diag(x)Diag(s)e



,

(4.2)
where K denotes the Hessian of the Lagrangian function L(y, x, s) := f(y)+
xT (g(y) + s) with respect to y. Using the last set of equations to solve for
∆s, we arrive at
[

K ∇g(y)
∇g(y)T −[Diag(x)]−1Diag(s)

](
∆y
∆x

)
=

(
−∇f(y) −∇g(y)x

−g(y) − t−1[Diag(x)]−1e

)
;

(4.3)
if we further eliminate ∆x, we reach

[K + ∇g(y)Diag(x)[Diag(s)]−1∇g(y)T ]∆y

= −∇f(y) −∇g(y)[x + t−1s + Diag(x)[Diag(s)]−1g(y)].
(4.4)

This reduces to the primal–dual system (3.11) when (NLP) reduces to the
linear programming problem min{−bT y : AT y − c ≤ 0} and when s =
c − AT y.

Primal–dual line-search methods start by solving one of the three linear
systems above. If the coefficient matrix in (4.4) is positive definite (this
is guaranteed when sufficiently close to a local minimizer of (NLP) satis-
fying the strong second-order sufficient conditions), the resulting solution
(∆y, ∆x,∆s) is taken as the search direction. Otherwise, most methods
modify the system in some way: either a multiple of the identity matrix of
order m is added to K, or a multiple of the identity matrix of order n is
subtracted from the (2, 2) block in (4.3), for example. The resulting direc-
tion ∆y can then be shown to be a descent direction for a merit function
such as

f(y) − t−1
∑

j

ln sj + ρ‖g(y) + s‖, (4.5)

possibly after increasing the positive penalty parameter ρ. A step is then
taken along the direction (∆y, ∆x,∆s) to ensure ‘sufficient’ decrease in the
merit function.
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In feasible methods (called quasi-feasible methods if there are also equal-
ity constraints present that may not be satisfied exactly), s is reset after
each iteration to −g(y), so that s > 0 forces g(y) < 0 for all iterates.
This requirement complicates and restricts the line search, but can avoid
some undesirable convergence behaviour. Such methods include those of
Gay, Overton and Wright (1998), Forsgren et al. (2002) (except in their
Section 6.4), and the quasi-feasible method of Chen and Goldfarb (2006).
The more common infeasible methods allow g(y) + s to be non-zero, and
control it implicitly through the merit function: see, e.g., Vanderbei and
Shanno (1999) (LOQO), Waltz, Morales, Nocedal and Orban (2006) (KNI-
TRO/DIRECT), Wächter and Biegler (2006) (IPOPT), and the infeasible
method of Chen and Goldfarb (2006). Important practical issues such as
how the linear systems are modified and solved, how the line searches are
performed, how the parameter t is adjusted, and what – if any – back-up
techniques are employed if poor convergence is observed, are discussed fur-
ther in these papers. For example, KNITRO (Byrd et al. 2006) reverts to a
trust-region interior-point subproblem to ensure global convergence if neg-
ative curvature or slow convergence is detected, and IPOPT uses a filter
approach instead of a traditional line search with a merit function, and also
includes a feasibility restoration phase. Chen and Goldfarb (2006) modify
the (2, 2)-block of (4.3) to correspond to the Newton system for moving
to a local minimizer of the merit function in (4.5) and may also modify
the (1, 1)-block; they prove strong global convergence properties for both
quasi-feasible and infeasible algorithms.

Overall, these methods have proved strongly competitive for general non-
linear programming problems, and research remains very active. Our treat-
ment has only scratched the surface; for details, consult the references cited
and the comprehensive survey articles of Forsgren et al. (2002) and Gould
et al. (2005). The software systems mentioned are available (sometimes free)
from the NEOS solvers website neos.mcs.anl.gov/neos/solvers/index.html.

5. Summary

Interior-point methods have changed the way we look at optimization prob-
lems over the last twenty years. In this paper we have concentrated on con-
vex problems, and in particular on the classes of structured convex problems
for which interior-point methods provide provably efficient algorithms. We
have highlighted the theory and motivation for these methods and their do-
mains of applicability, and also pointed out new topics of research. Finally,
we have sketched very briefly interior-point methods for general nonlinear
programming.

Since the field is so active, we conclude by pointing out once more some
sources for tracking current research and algorithms: the websites for Opti-
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mization Online at www.optimization-online.org/ and for the NEOS solvers
at neos.mcs.anl.gov/neos/solvers/index.html, and, for semidefinite program-
ming, Helmberg’s page at www-user.tu-chemnitz.de/∼helmberg/semidef.html.
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M. J. Todd, K.-C. Toh and R. H. Tütüncü (1998), ‘On the Nesterov–Todd direction

in semidefinite programming’, SIAM J. Optim. 8, 769–796.
K. C. Toh (2007), ‘An inexact primal–dual path-following algorithm for convex

quadratic SDP’, Math. Program. 112, 221–254.
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